
International Journal of Theoretical Physics, Vol. 25, No. 12, 1986 

Orthogonal Harmonic Polynomials on U(2) 

E. Donth I and O. Lange 1 

Received July 7, 1986 

Electric charges and free electromagnetic waves are supposed to be described 
locally with the same wave differential equation. It is only the topology that is 
considered to be different. The calculated nonlocal U(2) individuals are charac- 
terized by polynomials that belong neither to the classical nor to the Szeg6 
polynomials. The construction of the polynomial solution in component  form, 
their orthogonality over singular measures,  the relationships to the Jacobi poly- 
nomials,  Rodriguez formulas,  product decomposition, asymptotic formulas,  and 
completeness are presented in some detail. The possibility is discussed of  whether 
this highly nonlocal model for electric charges can have a physical significance. 
This work is intended to be a first step for the realization of an old idea of 
Einstein's (and also commented on by Dirac) to start with the electric charge, 
not with the Planck constant, as the primary concept for quantum theory. 

1. I N T R O D U C T I O N  

This work is based on the following physical motive. Electrodynamics 
is characterized by two phenomena:  transverse waves and point charges. 
Free waves are described by the homogeneous  Maxwell  equations, 

d F = O ,  d ' F = 0  (1) 

in terms o f  external differential forms. The 2-form F corresponds to the 
antisymmetric Maxwell  field tensor in more conventional terms. 

The charges are considered as sources of  the fields and are introduced 
"by hand" in the right-hand side of  one of  these equations, 

d F  = O, d * F  = e * j  (2) 

where *j is the current density and e is a unit system factor (e = 4zr in the 
Gaussian system). 
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If  the charge carriers are described by complex fields, then the coupling 
between charges and field is constructed more intricately (gauge fields). 
The electromagnetic sector of  the Lagrangian L is symbolically denoted as 

L = - ( u T h D r  - mo c ~  - ( 4 e c ) - l F F  (3) 

Besides the presumed affine connection (Minkowski space Ma with coordin- 
ates x), from the requirement of a local gauge invariance U(1), 

~O ~ e'~(~)r A ~ A - dq~ (4) 

one obtains "automatically" a gauge connection that can be characterized 
by the covariant derivation 

Dqs = dt~ - ( i e / h e ) A ~ b ,  D~b ~ e i~('~) DtO (5) 

The coupling is realized by the potential 1-form A, with 

F = d A  (6) 

The electrical charge obtained from global U(1) gauge invariance is a 
Noether charge. 

The phenomenological character of such electrodynamics, put together 
in such a way, can be seen from the fact that some fundamental questions 
are left absolutely open, for instance: 

(i) There is no hint for a calculation of  the universal low-energy 
coupling constant a = ( e Z / h c ) ( e / 4 q r ) ~  1/137. 

(ii) There is no "internal" reason for the existence of several lepton 
generations [e,/~, z , . . .  (?)]; all of  them are thought to be pure electromag- 
netic (or, in modern terms, electroweak) in the same manner. 

Thus at present there is no comprehensive internal connection between 
charges and waves. This fact is in principal not changed by quantization, 
as is well known. 

In this situation the following question seems apt. Can a reasonable 
electromagnetic theory be constructed only on the basis of the homogeneous 
equations (1), when individual compact spaces for the leptons and other 
massive particles are admitted? 

This means we are trying to connect waves and charges by the common 
requirement that both are locally governed by the same differential 
equations. It is only the global topology that is different for charges and 
waves. 

R e m a r k  1.1. By using fields on individual spaces the particles get a 
structure described by variables. These must be hidden in a quantum theory, 
because the latter must not be changed, according to the correspondence 
principle. According to Bell's hidden variable theorem, this structure must 
not be local. Therefore, in contradiction to the Kaluza-Klein models or to 
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ideas that try to answer the question of where the internal or charge spaces 
of gauge field theories should be located, we have to imagine that our 
compact spaces are existent in (see Section 9) the Minkowski space, each 
of  them conformallly extended to infinity. The internal spaces are "inter- 
penetrating" each other and are thought to be some kind of "boundary 
conditions" or "flavor" for particles other than leptons. They are, so to 
speak, complements to the points that are thought to be the particles. This 
concept is supported by the real existence of  Coulomb fields which have 
exactly such properties, and by the principal nonlocal character of quantum 
mechanics. 

The selection of a proper compact space in the framework of elec- 
tromagnetism is fixed by the following statement. U(2) - S 1 • S 3 is, up to 
overlappings, the only four-dimensional compact Lie group space that 
permits a maximally two-parameter set of biinvariant metrics ( -  means 
ditteomorph). 

As is well known, the group space U(2) has the following properties: 
dimension d = 4, Eulerian characteristic X = 0 of course, cohomology group 
H 2 - 0, Poincar6 group ~'2 - 0. 

It follows that all the properties of importance for electrodynamics can 
be taken in U(2). That is, transversality of waves (d = 4), pseudo-Rieman- 
nian metrics (X = 0, Steenrod's theorem, Cartesian product S j x $3), constant 
scaling between spacelike (S 3) and timelike (S a) parts, which is realized in 
M4 by the constant light velocity c (two parametric set of metrics), global 
introduction of a potential A according to equation (6) (H 2-  0), and the 
opportunity to find fields without singularities (Lie group space); besides, 
one cannot lose one's way here (~r2=0). 

The model "equation (1) on U(2)" also seems interesting per se because 
of its attractive symmetry, in which highly symmetric (S a, S 3) and antisym- 
metric (F)  elements are connected in a low dimension without singularities. 

* g~ :g 

The space U(2) is parametrized by biharmonic coordinates (Barut and 
Raczka, 1977) 

SI: X 0= T; $3: xl = ~1, x2 = q~2, x 3 = 03 (7) 

with 

0-< r, qh, ~pz < 27r, 0-< 0 3 < ~ / 2  

The pseudo-Riemannian biinvariant (standard) metric is then 

ds2  = a 2 d r  2 -  s i n  2 0 3  2 2 dr 03 dq~2-dO 2 

(8) 

(9a) 
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where the ~'-scaling factor a characterizes the relative "sizes" of S ~ and S 3. 
For the time being we put for simplicity 

a = 1 (9b) 

The consequences of equation (9b) cannot be estimated at the present stage. 
Besides, equation (9a) is not a solution of the Maxwell-Einstein equations. 

Using equation (6) for the potential A = (4~, A1, A2, A3) = (q~, A), one 
can write equation (1) as 

. 0 {Off)OAI) 0 (Oq~ OA2"~.+ 0 [b(~303 cot 03 ~-~ 1 t ~--~ 1 ~-z ] + tan  "03 - Oq~2 ~ O'r ] 003 

_ c o t " 0 3 0 ( O q ~  OAI~+I_ 0 (OA 2 
Oq" \ O(~O 1 O"~T I b 0 @-~22 \ ~-@1 

- t a n  "00(Od)  OA2"~+l 0 (OA1 

OA3~ -=- 0 

(lOa) 

oA1]+ o__[cotO3(oA~ oAl~] 
0-~2 / 0"03L \Oqo, ~ 3 , / j  =0  

(lOb) 

o r loA3 oAq ] 
- -  + - -  t a n  "03 - -  = 0  0~1) o"03[ t,o~,= ;-b-]31_l 

(10c) 

(0+ 0 (OA, oA3) 0 (oA  OA3) 
- 0 - z ~ \ ~ 3  0 r / + c ~  -~ l /+ tan"030-~2 \~33  0-~-~2/=0 

(10d) 
with b = sin "03 cos "03 = ~ / ~ ,  where g stands for the metric tensor deter- 
minant. 

We are interested in special wavelike solutions. Using the wave gauge 
for A, 

~b =0,  div(S3)A = 0 (11) 

we look for solutions in the "component form" 

(A1, 0, 0), (0, A2, 0), (0, 0, A3) (12) 

Since equations (10) are linear and homogeneous, the potential (A~, A2, A3) 
with Aa, A2, A3 from Equation (12) is also a solution. 

From equations (10b) and (10c) we obtain then for the components (12) 

02A1 1 02A1 1 0 ( OAI~ 
Or 2 cos 2 03 0 ~  cot "03 00"3 cot " 0 3 ~ 3 / = 0  (13a) 

02A2 1 02A2 1 0 ( OA2"] 
Or 2 sin203 O~p~ tan'030"03 tan'030-O-~3]=O (13b) 

and 

O2A1/ Oq~l 0'7 = O, 
O2A2/Oqg: aT = 0, 

02Al/Oq~l 0q~2 = 0, 

02A2/0~02 0~1 = 0, 

02A1/0~1 003 = 0 

02Ae/ Oq~2 0"03 = 0 
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The latter also follow from the second of equations (11), that is, 
OA1/O~o I = 0 and oA2/Oq~2 = 0, respectively. 

Similarly, for A 3 w e  obtain 

02A3 02A3 02A3 
b 0~.2 - c o t  0 3 - 7 - 7 - t a n  0- 3 ~ = 0 (13C) 

0q~l 0q~2 

0 (bOA3" ~ \  -~-~' 0 ( OA3\ 0 ( ~,~,OA3\ 
=0,  cot O3-0-~1)=0, tan = 

003 003 ~ o 2, 
0 

o03 

Provided A3 is also a function of 03, it follows that, apart from rather 
pathological possibilities such as 

A3 = q~l tan 03+ ~z cot 03+ h(O3) 

A3 does not depend on ~1 and q~2. That leaves 02A3/07 "z= O, and there is 
obviously no possibility to get a wavelike solution for A3 in this way. 

Therefore, our compact waves are also transverse. Periodic wave sol- 
utions for A1 and A2 are obtained with a separation ansatz from equations 
(13a) and (13b), 

A~ 'k = exp(iw~- - irnq@;~,,k (x), x =: cos 03 (14a) 

a~  'k = exp(iw~- - irnq~)~,,,~(~), ~:=: sin 03 (14b) 

where m and o) are integers when periodicity is required and a = 1. 
The existence of such component form solutions is thought to be (i) a 

general property of electrodynamics and (ii) a special advantage of the 
parametrization by biharmonic coordinates where the qh and ~ lines are 
geodesics on S 3 for q~3 = ~r/2 and P3 = 0, resp. 

The Ymk are the orthogonal polynomials of interest in the present paper. 
The index k is an integer that follows from the series breakdown condition 
a s  

(see below). Substituting 

Z = X 2 = COS 2 0 3 ,  

~ o = m + 2 k  (15) 

~" = ~:2 = sin2 03 ( z + ~ = l )  (16) 

we find that the functions y,,,k(z) are determined by the following ordinary 
differential equation of the Sturm-Liouvilie type: 

d ( @ ) o 9 2 1  m Z l  
Zaz +--4 1 - z  y 4 z (1 - z )  y = ~  (17) 

Comparing with the general Sturm-Liouville equation, 

[p(z)y']'- q(z)y + (A/4)p(z)y = 0 (18) 
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we see that there are two possibilities for  the eigenvalues h and the corre- 
sponding  weights p(z) ,  

rn 2 1 
q l ( z ) -  A --0/2, f l l ( Z ) : ( 1 - z )  -1 (19a) 

4 z ( 1 - z ) '  

2 --0/  1 
- -  A = - m  e, pc(Z) = Z- l (1- -2")  -1 (19b) 

q 2 ( z ) - -  4 1 - z '  

Both weights are singular in the closed interval [0, 1], so that the polynomials  
for r n = 0  are neither classical nor  Szeg6 (Szeg6, 1959) polynomials .  
Nevertheless,  we obtain in this work, by means of  a tradit ional t reatment  
o f  equat ion (17), many  properties for them that  are typical for classical 
polynomials ,  especially for Legendre polynomials .  This corresponds to a 
conjecture by Bateman and Erd61yi (1953). 

2. C O N S T R U C T I O N  O F  T H E  P O L Y N O M I A L  S O L U T I O N  

We are interested in polynomial  solutions o f  equat ion (17) in the 
x-form, i.e., in the polynomials  )~(x) f rom the differential equat ion 

(1 - x2)x237" + (1 - x2)xf ' - rn2 f + 0/2x2~ = 0 (20) 

Note  that  m=integer<:~per iodic i ty  in the compact  coordinate  ~0j<::> 
polynomial  requirement  for  finite )7(x). 

From the series ansatz 

~-= ~ a,x  ~+~ (21) 

we obtain 

co 

[ ( v+p)Z-mZ]a ,x  "+~ ~, [(u+p)2-0/2]a~x~+p+2=O 
v = O  v = O  

Compar ing  the coefficients at x p yields ( p 2 _  m2)ao=0 .  Therefore,  p = m 
(>-0 for finite )7) or ao = 0. The latter case gives, f rom a compar ison  of  the 
x p+I coefficients, [( p + 1) 2 - rn2]al = 0 and so p = m - 1. I f  we choose p = m, 
then we obtain al = 0. Both ways are equivalent. We pursue the first variant: 
p = m, al = 0, ao available. Cont inue  compar ing  the coefficients. Then 

(2K - 2 +  m ) 2 - 0 / 2  
a2~ - (2K + m) 2 -  m 2 a2"-2 (22) 
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and a2K+l = 0 for K = 1, 2 , . . . .  Polynomials are obtained only for the break- 
down condition 

( 2 K - 2 + m ) 2 - t o 2 = 0  

(and m an integer), which leads to the highest index 

2K = - m  + to =: 2k (23) 

with nonvanishing coefficients [cf. equation (15)]. [When polynomial-like 
solutions of  equation (20)--cf. also equation (32)--are obtained for nonin- 
tegers m > 0 and to = 2k+  m, then k must be an integer.] It follows that 

( K - l - k ) ( K - l - k + m )  
a2.- K(K+m) a2,~-2, K = l , 2  . . . .  , k  

and finally 

For 

a~ k+m-1)k-1 / 
we obtain the polynomials quoted in Donth (1984), 

for integer m->O. Using the substitution (16), we can obtain some other 
forms: 

and for k-~ 1 

k-1 .,[k\/2k+m,, /', re+k-K-l) _z)k_ . 

ZK(1--Z) k-K 

(25c) 

Some polynomials with low indices in the form of equation (24) are given 
in Donth (1984), and in the form of equation (25c) in Donth (1986). For 
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k > 1, the y ' s  can be factor ized with ( 1 -  z) or  ( 1 - x 2 ) ,  respectively,  which 
yields in low order  of  k 

.~,.o(X) 
;,.~(x) 

#o~(X) 

s 

#~(x) 

#,~ ( x ) 

#o~(x) 

#l~(X) 

A~(x) 

= X  m 

= X m ( 1 - X  2) 

= (1 - X2)(1 - 3X 2) 

= X (1 - X 2) (2 - 4X 2) 

= x2(1 - x2)(3 - 5x 2) 

= x3(1 - x 2 ) ( 4 -  6x 2) 

----- (1 --X2)(1 --Sx2"k 10X 4) 

= x(1 - x2)(3 - 15X2+ 15X 4) 

= x2(1 - x 2) (6 - 24x 2 + 21 x 4) 

(26) 

Y04 (X) = ( 1 - x2)( 1 - 15x 2 + 45x 4 -- 36X 6) 

Remark 2.1. It  may  be o f  interest, with respect  to the const ruct ion of  an 
e lec t romagnet ic  vacuum (see Section 9), that  the b inomia l  coefficients in 
the mixed  form (25c), say, al low a rather  s imple statistical in terpre ta t ion 
(Donth ,  1986): 

( k )  n u m b e r  o f  K.sets o f  a k-set  (division of  k dist inguishable 
= boxes  in two kinds {z, ~'}, K pieces of  z and k - K pieces of  ~') 

k + m  1) n u m b e r  o f  different distr ibutions (combina t ion  with repeti- 
m + -K -- t ion) of  m + K nondis t inguishable  balls in the k -  K boxes  

labeled with # 

There  is some hope  that  the large b inomia l  coefficients for  k ~  oo can be 
" r eno rma l i zed"  by a ra ther  small coupl ing constant  for the measurab le  
quanti t ies being finite. For  m = 0 the fol lowing count ing p rob l em has a 
surpris ingly simple solut ion (Biess et al., 1986): Given  k and K, find the 
n u m b e r  Aj(K, p) ,  p = k -  K, of  boxes  containing just  i balls. The answer  is 

[ p + K  - i - 2 )  

a i = p \  K--2  ' 
p-->2 (27) 

3. O R T H O G O N A L I T Y  

Theorem 1. (i) For  k, k ' ~  O, k r  k ' ,  and any m (not necessari ly an 
integer),  Y,.k and Y,.k' are or thogonal  on z - - [O,  1] with the weight p~ = 
(1 - z ) - %  (ii) For  k, k ' # O ,  m # m '  but  w = to', ymk and Y,.'k' are or thogonal  
on z =  [0, 1] with the weight  p 2 =  z - l ( 1 - z )  -1. 
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Proof Multiply equation (17) for m', k' by Ymk (Z). Subtract the equation 
with m', k' and m, k exchanged, 

d [ dym,k, dy~k'~ 
-~z ~ ZY,,,k---~z --ZY,.'k'---~Z ] 

( m ' + 2 k ' ) 2 - ( m + 2 k )  2 
4 Ym'k'Ymk 

4(1 --Z) 

m t2 _ m 2 
4z(1 -- z) Ym'k'Ymk = 0 (28) 

Since Ymk(1) =0  for k_> 1, integration of (28) over [0, 1] gives 

f o' dZ - ( m'2 f o dz (to,2 _ to2) Ym'k'Ymk 1 - - Z  --  m 2 )  Ym'y'Ymk g ( 1  --  Z'------~ = 0 

where to = m+2k.  This implies property (i) for m ' =  m and (ii) for to'= o). 

Remark 3.1. The weight functions Pl and P2 are not summable. There 
are no moments. 

Remark 3.2. As a rule, the functions y,~o = z m/2 (i.e., k =  0) do not 
belong to the orthogonal system (i) or (ii), because of the supposition k-> 1. 

4. R E L A T I O N S H I P  TO T H E  J A C O B I  P O L Y N O M I A L S  

Since equation (17) is a differential equation of the Fuchs type (the 
three singularities at z = 0, 1, ~ are regular singular points), and because 
the y's can be factorized by ( 1 -  z ) ,  we put 

Y,~k (Z) = zm/2(1 -- Z)U,,,k (Z) (29) 

U,,k(Z) are polynomials of degree ( k - 1 )  and are solutions of the following 
hypergeometric differential equation: 

z ( z - 1 ) u " + [ ( m + 3 ) z - ( m + l ) ] u ' + ( m + k + l ) ( 1 - k ) u = O  (30) 

The holomorphic solution of this equation (in the neighborhood of z = 0) 
can be represented by the hypergeometric series 

u= F ( m + k + l ,  l - k ,  m + l ,  z) (31) 

The series breaks down for integer k - 1. That is, u = u,,,k, which corresponds 
therefore to a Jacobi polynomial R~k"51)(z) for the interval [0, 1]. Thus, after 
comparison with equation (24), 

y , , , k ( Z ) = - ( m + k 5 1 ) z ' / z ( 1 - z ) F ( m + k + l  , l - k ,  re+l,  z) (32) 
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and we have proved the following: 

Theorem 2. ymk(z), k -  > 1, has k - 1  zeros in the open interval (0, 1). 

Remark  4.1. An overview of  the distribution o f  the zeros can be 
obtained f rom a compar ison  with the oscillator equat ion [Sturm's  theorem; 
cf. A m o l ' d  (1984)]. 

Let t = In z. Then equat ion (17) reads 

d2y /  dt2 + to~a( t )y  = 0 

where 

2 (.O 2 e t m 2 1 
toeff- 4 1 - e  t 4 1 - e  t 

For zeros Zo and z~ lying close to one another  (as for large k), their distance 
At = ln(zo/Z~) can be est imated from 

At ~ 7r / w ea 

which yields, near z = 1, the following zero distribution: 

At ~ Az ~ 7r[(1 - z ) / k ( k +  m ) ]  1/2 

The largest zero is at z ~- 1 -  ~ 2 / 2 k ( k +  m).  
For m >> k, all the zeros are located in the narrow interval (1 - 4 k / m ,  1) 

near z = 1. This follows f rom equat ion (17) written as 

a [ ay'~ m 2 zy = 0  
Z -~z ~ Z -~z ) - --4 Y + ( m k + k 2 ) 1 -  z 

The first two terms give y = z m/2, which can be disturbed by the third term 
only in this interval. For  small z the zero distribution can be discussed in 
the asymptot ic  representat ion (48) [see below]. 

5. R O D R I G U E Z  F O R M U L A  A N D  G E N E R A T I N G  F U N C T I O N  FOR 

m - ' O  

Theorem 3. There is a Rodriguez formula  for the polynomials  yok, 

1--Z d k 
Yok(Z) -- k ~  dz k [(1 - z ) k - l z  k] (33) 

Proof  This follows f rom Theorem l(i) after a long but elementary 
calculation. 
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Remark 5.1. Formula (33) has the same form as for the classical 
polynomials, although the weight p~ is not summable. Another formula of 
this type can be obtained from the Jacobi polynomials, 

dk-1 
c -,./2 [z.,+k-l(z_ Ymk = ,,k" dzk-, 1) k] (34) 

where Cmk are constants. These "associated functions" Ymk(Z), m > 0, can 
also be obtained by integration. Let Vmk = y,,M/Z m/2, k --- 1. Then 

k - 1  
Vrn+l,k "~- t)mk ~ - Z - ~  MZ t ztmt)mk(Z t) (35) 

Theorem 4. (Generating function). The functions Yok(Z), k= 
0, 1, 2 , . . . ,  are the coefficients of a Taylor series expansion of 

H(z, w) = 1 -~ (1 - w)2+4wz (36) 

about w = 0. 

Proof Obtain from equation (33) the Schl/ifli integral representation, 

( 1 - z ) k ! ~  (1-z')k-lz ' k  

Yok 2i , ~  (Z'--Z) k+~ dz' (37) 

where C is a closed path around z in the complex z plane leaving z '=  1 
outside. Put it in the series. For sufficiently small w on C, 

I (1-z ' )z 'wl  < l z ' - z  

we have 

[(1-,z')z'w] k _  _ 1 

k=0 L z - z  _1 1 - ( 1 - z ' ) z ' w / ( z ' - z )  

Change summation and integration. Then 

1 f dz' 
H(z, w ) = ( 1 - z )  

2 ~---'--i ~)c (1 - z ')[z '-  z - (1 - z')z'w] (38) 

According to the Rouch6 theorem, there is exactly one zero ~" of  the 
denominator inside C, 

~(z, w) = ~w { - (1  - w) + [(1 - w) 2 + 4wz] 1/2} 

Then equation (36) is the residue of (38). 
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Corollary 5.1. 

Donth and Lange 

From a comparison of equation (36) with the generating 
function for the Legendre polynomials Pk for k --- 1 we obtain 

yok(Z) = (1/2)[Pk(1 --2Z)+ Pk+l (1 --2Z)] (39) 

and 

(--1)kYok(Z)+ yok(~) = Pk(Z -- ~) (46) 

where ~ = 1 - z  [cf. equation (16)] and Yok(~) is the conjugate polynomial 
with respect to the pair (13a)-(13b). 

Corollary 5.2. The following recursion formulas can be obtained from 
equations (33) and (36): 

d 1 d 1 d 
YOk=(1--2Z)-~zYOk--2-~zYO'k+I 2 dz yo'k-' 

[  2k2-1) 2(2k+1) ] 
Y ~  k + l  z Yok 

2(2k+ 1 ) (k -  1) 2 
( 2 k -  1) (2k-  2)(k+ 1) Yo,k-1 

and, more generally for m - 0, k -  1, 

Y,,,k+l = ( a + bz)Ymk + cYm, k-1 

where a, b, and c are constants depending on m and k. Further recursion 
formulas can be obtained from the known properties of the Jacobi poly- 
nomials. 

6. PRODUCT DECOMPOSITION 

This section shows how many components are obtained by a decomposi- 
tion of a product of two y's. 

qt(z) be polynomials in z of degree 1. Then the Lemma 6.1. Let 
functions 

can be represented by 

and 

Q,.t(z) =: z'/2(1 - z)ql(z)  

~, /+1  Qml(Z) = z..,,=l a,,ymK(Z) 

(41) 

(42) 

1 

Qm,(z)= ~ b~,ym+2~,.,+,-~(z) (43) 
/z=O 
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Now,  cons ide r  tha t  a p r o d u c t  o f  any  two y ' s  is o f  the  form (41), 

Y,n~k, " Ymzk2 = Q,,,t, m = ml  + m2, 1= k l  + k 2 -  1 

E x a m p l e  6. I.: 

Y21 ( z ) Ya2( Z) = ale51 ( z ) + aEys2( z ) + aaYsa( Z ) 

= boYsa(Z) + ba Y72 (z) + b3Y9~ (z)  

The first row is for  given m, and  the second  row is for  given w = m + 2 k .  
F r o m  this it fol lows tha t  the  coefficients aK and  b ,  can be ob t a ined  f rom 

Theo rem 1. 

Theorem 5. In  the  r ep resen ta t ion  

kl+k 2 
yr.,k,(Z)ym2k2(Z) = ~. aKym~+.,2,.(z) (44) 

K=I 

all coefficients vanish  with  

K < max{kl  - m2 - k2, k2 - ml - kl} 

Proo f  Mul t ip ly  by  pl y,,,l+,.~,/(z) and  integrate .  Then,  f rom T he o re m 1, 

a~, = N -1 plym,kl(Z)ym,+mz,,~,(Z)ym2k2(Z) dz (45) 

where  

fO Kt N 2 
= PlYmI+m:,~'(Z) d z - ( K , + m a + m 2 ) ( 2 K , + m l + m 2  ) 

Use equa t ion  (43), 

ml+kl+K" 
ym,k,(Z)ym,+ . . . .  ,(Z) = Y. b~ym~(z)  

v=l  

and  put  it into equa t ion  (45). Then,  f rom The o re m 1 again,  we see that  

aK, = 0 for  ml + kl + K' < k2, that  is, K' < k2 - ml - k l .  Symmetr ica l ly ,  aK, = 0 
for  K' < kl - m2 - k2. 

E x a m p l e  6.2.: 

YH (z)ymk (Z) = ak+lYm+l,k+l (Z) + akym+l,k (Z) 

-'b ak_ 1Ym+l,k-1 (Z) + a k - 2 Y m + l , k - 2  (Z)  

21Yl i Y12 = 4y23 + 6y22 

5 0 0 5 y l  1 Y16 = 792y27 + 924y26 - 420y25 - 525y24 
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Corollary 6.1. The n u m b e r  of  coefficients different f rom zero is always 
smaller  than  or equal  to min{o~l + 1, ~o2+ 1}. 

It is no tewor thy  that,  for  even m~, a similar  theorem is valid also for  
a p roduc t  o f  conjugated polynomials :  

Theorem 6. Let ml be an even integer, k~, k2>  1. In the representa t ion  

kt+k2-1+ml/2 
Y,,lkl(~)Ym2k2(Z) = ~ aKy2+m2,K(Z) (46) 

f < = l  

all the coefficients aK vanish with 

K < k2 - kl - 1 - m l / 2  

Proof. Equat ion  (46) comes  f rom equat ion  (42) and the representa t ion  

Yrnlk,(~) = z(1 - z)qkl_2+m,/2 

Corollary 6.2. Only ~o 1 + 1 terms are needed  in the representa t ion  (46) 
maximally .  For  a deve lopment  with y(~) ,  a symmetr ica l  representa t ion  is 
obtained.  

7. ASYMPTOTIC REPRESENTATIONS 

An asympto te  can be obta ined  f rom a compar i son  of  our  differential 
equat ion (20) with the Bessel equation,  

x2 y"+  xy '  + (x  2 - z,2)y = 0 (47) 

for  x--> 0. Putting s = wx, we derive the fol lowing equat ion f rom equat ion  
(20) for  x << 1: 

s 2 d2:~/ds  ~ + s d ~ / d s  + (s  ~ -  m~):~ = 0 

Since )7ok (0) = 1 and Y,,k (0) = 0 for  m/> 1, 

( k + m - 1 ) !  
f m k ( x ) ~ ( k _ l ) I ( m / 2 + k ) ,  . J,,(a~x) for  x2<< 1 (48) 

where w = m + 2 k  again and Jm is the Bessel funct ion of  first kind of  order  m. 
C o m p a r i n g  the Legendre  differential equat ion  for  m = 0, 

(1 - x 2 ) y " - 2 x y ' +  l ( l+  1)y = 0 (49) 

with our  equat ion  (20) for  m = 0, rear ranged in the form 

(1 - x2))7" + 1 - x 2 )7,+ (2k)2~ = 0 (50) 
x 

we see that,  for  k >> 1 and mean  x values be tween 0 and 1, our  )~ok behaves  
like a solut ion of  the Legendre  equat ion (49) for  l = 2k, because  for  k >> 1 
and l >> 1 the second te rm of  equat ions (49) and (50) can be neglected.  
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8. C O M P L E T E N E S S  

Let 

v =: (1 - z)-~/2y(z) (51) 

where y(z) is a solution of our differential equation (17). Then, from (17), 
we have for v 

[z(1-z)v']'+ 4 ( 1 -  z) 4z ~- v = 0  (52) 

7. The linear differential operator Lm, m a nonnegative Theorem 
integer, 

with 

, , [ 2 -  z m 2]  
Lmv(z)=: + ( 1 - z ) v  I + + w j  v 

D(Lm) = {v: v(z) = zm/2(1 -z)l/2p(z)} 

where p is a polynomial of z, is essentially self-adjoint in L2(0, 1), the 
closure Lm is an operator with a pure point spectrum, the eigenvalues 
Ak = -  ~o~/4 = (m +2k)2/4,  k = 1, 2 , . . . ,  are single, and the corresponding 
eigenfunctions are 

Vmk=Zm/2(1-z) l /2F(m+k+l,  - ( k - l ) ,  m + l , z )  (53) 

Proof The last statements follow from 

LmVmk --= (m/2 + k)%,,k (54) 

and the theorem follows with arguments given by Triebel (1972). 
Theorem 7 is also valid for any real m->0. Now, we consider the 

orthogonal system from Theorem l(i) with p~ = (1 - z) -~ for m = 0, 1, 2 , . . . .  
From Theorem 7 we have the following: 

Theorem 8. The system 

{Ymk} k~ 1, m = 0, 1, 2 , . . . ,  given 

is a complete orthogonal system on [0, 1] with the weight p~ = ( 1 - z )  -1. 
Any function h(z), 

h(z)=g(z)(1-z)l/2=g(z)pTa/2, g(z)~L2(O, 1) 

can be represented as 

co 

h ( z ) =  • akYmk(Z) (55) 
k = l  

This theorem is also valid for any real m -> 0. 
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The orthogonal systems from Theorem l(ii) with given w = m+2k, 
w->2 integer, and p2 = z - l ( 1 - - Z )  -1 are finite. The dimension of the corre- 
sponding functional spaces increases with increasing to. 

Ending the mathematical part of our paper, we wish to make a remark 
concerning the following question: Can a given function f (z ,  q'l, ~02, 03) on 
$1• S 3~ U(2) be represented as a series expansion over A7 k and A~ k 
according to equations (14a) and (14b)? This is not possible. Although we 
have really an eigenvalue problem with respect to the differential equation 
(17) and to a periodicity requirement on U(2), it is not the eigenvalue 
problem suitable for that question. The latter should be of the form 
M ( U ( 2 ) ) ( F )  = AMF where M is some linear operator on U(2) such as the 
Laplace-Beltrami operator or something like that. Clearly, the homogeneous 
equations (1) are not of such a form. 

Our analysis shows that, apart from a periodicity requirement, the 
properties of the polynomials Ymk are rather independent of the exponential 
wave factors of equations (14), 

exp i ( w r -  mq~), j = 1, 2 (56) 

This means that the polynomials Ymk are to be considered as the proper 
hidden functions of our charge model. 

9. DISCUSSION OF THE POSSIBILITY OF GIVING OUR 
MODEL A PHYSICAL SIGNIFICANCE 

In this final section we propose a test of the physical significance of 
our charge model. 

Historically, Einstein's suggestion (1909, paragraph 10; see also Dirac, 
1963) that quantum physics be traced back to concepts of elementary charge 
has not been followed. Instead, the Planck constant h (uncertainty relation) 
was the starting point, and attempts were made to obtain quantized charges 
from it. 

Now, in the spirit of  Einstein, we will start from a large set of our 
U(2) individuals [field configuration equations (14)] and, for the time being, 
most consistently, only from such a set, and will discuss the possibility of 
how to obtain the common space-time and a reasonable quantum theory 
from it. A rough sketch of a map on the standard Weinberg-Salam model 
for the electroweak interaction seems to be a fair choice for a first step. 

The main problem is the handling of nonlocal, infinitely large 
individuals with the focus of local field theories ("particle points"). 
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What follows is a short list of concepts and (unsolved) problems, which 
is given as a program for further work. A more detailed discussion is in 
preparation. 

C h a r g e .  The U(2) individuals (14) are considered to be a model for 
a dimensionless representation of naturally [by r in U(2)] 
quantized charges. They are characterized by two integers, m and k. The 
interpretation is as follows (Donth, 1984, 1986): The fields A1 and A2 have 
different charge signs; charge conjugation is 

C: x '~s  c, ~ " - ~ 2  (57) 

and therefore AI",-~A2, the net value of a charge is m, and k (a "private 
vacuum") can be used for indexing the lepton generations. Using the 
symbols 

k q :  ' A2 = k+ (58) 

(the sum of signs is w=2k+m), we can describe the charged leptons 
(e,/z, r , . . . )  by compact waves 

( 0 ) '  ( -~) '  ( ~ - + ) ' ' " '  (59, 

and the neutrinos by the corresponding compact oscillations ( m  = 0)  

(:) (o)(0) 
, , + + , . . .  ( 6 0 )  

These functions can also be used for quark flavors, and (o) seems to be a 
good candidate for the baryon charge. It can be attached to the baryon as 
a whole, as the U(2) individuals are assumed to be of infinite size. A full 
classification scheme with no need for broken quark charges (which could 
hardly be integrated into our model with q~i periodicity) is given in Donth 
(1986). The existence of only two charge signs is a consequence of the 
transversality of our compact wave model [cf. equation (13c)]. 

Space-time. The common plane Minkowski space M4 can only be 
constructed from plane "private" space elements, that is, from tangential 
spaces at the U(2) individuals. The first problem is linking the two non- 
equivalent spinor representations of BL(2, C) with the pairs (A1, ~2) and 
(r A2) on the U(2) configurations with no loss of the particle identities. 
The second problem is the reason for the metric (9) used in U(2). Does 
it come from the presumed wave properties (Huygens principle)? (More 
radically: are there waves without any metrics?) Or does it come from some 
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mutual local electrodynamic correspondence between the individual U(2)'s 
and the common M4? If  the light cone "is given" (e.g. stemming from 
bilinear spinor bases), then its invariance implies conformal symmetry of 
the common space (Weyl, 1923, p. 74). 

The exponentials (56) are suggested to be the basis for the construction 
of a nontrivial connectedness of  the common space. Using de Broglie's 
famous phase equality principle, one can try to construct an "undulatoric 
connection" from exp(itor) that should lead to an affine connection in the 
classical limit. The second exponentials exp(imq~j), j = 1, 2, containing the 
SU(2) coordinates ~01 and ~o2 and the net charge m, should be good 
candidates for constructing gauge connections. 

The existence of individual space elements was the basis for a nonrela- 
tivistic proof  of the spin-statistics theorem (Donth, 1970, 1977). 

Quantum. The main concept of quantum theory is the "indivisibility" 
of its phenomena. Therefore, our model makes sense only when the U(2) 
individuals are principally considered to be the quanta per se. Different 
quanta must be identifiable in M4. This means that the " touch"  between 
M4 and the U(2) individuals should be realized by a Lie algebra, which is, 
according to the Frobenius theorem, the integrability condition needed for 
their identification. As the definition of a commutator includes a certain 
neighborhood (i.e., the touch is more than a point), we should find here 
the basis for the uncertainty principle. As the interaction between particles 
is quantized, too, the gauge connections should also be linked to U(2) 
individuals, e.g., two solutions (14) for a gauge boson. 

Points in M4. Local field theory means, in spite of quantization, that 
points can be defined in M4. But a point can be constructed from extended 
space elements only when an infinite number of them can be used (cf. such 
constructions as Dedekind's cut, culminating point, or something similar). 
Therefore, the vacuum should be represented by "big" individuals (A'7 k in 
the limit k ~ co; or k ~ 104~ the rest being the gravitation?). 

Let us define vacuum elements ("virtual neutrinos," "spinning oscil- 
lators") as A ~ functions with small k' being members (multiplicative 
elements) of a series expansion of the big A ~ k > k'. In the example of  the 
series (25c) we have the neutrinos (k '= 1) 

for 

u~ = exp(2iT-)z, uc = exp(2iz')~ 

= "  " /"z ~ q - - - - ,  
K K 

(61) 

7-= 7-' (62) 
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They are called virtual because neither �9 K k-~ :~z nor vr nor their product is a 
" t rue"  individual, i.e., a solution of equations (10) in the sense of  equations 
(14) forK,  k - K > 1 .  

Let us assume that a big individual is not stable in M4 because the 
binomials in the series (25) (statistical weights of  its vacuum elements) are 
steeply increasing with k [cardinality e ~k, a = O(1)]. Then there are enough 
vacuum elements for the construction of point spaces. 

It seems to be an interesting question to find the " t rue" vacuum series 
expansion from a chemical equilibrium between vacuum elements of  several 
generations. The presumed instability could also be the reason for a break- 
down of the generation sequence (59) and (60) and the nonexistence of 
nonpolynomials  as individuals. 

Renormalization.  The desired map on local fields in a U(2)-gauge fiber 
bundle over M4 demands that (i) the U(2) individuals (containing field 
configurations A rag) could be reduced to group or generator representations 
(containing no field configurations) with respect to both M4 and U(2) 2, 
and that (ii) the construction of a point in Ma could be achieved by a 
condensation of the hidden polynomials Ymk to mass and charge values. 
Therefore, the concepts of  point, mass value too, charge value e, and 
experiment (using the vacuum here) are tightly linked. 

A strongly simplified model for calculating the charge value along these 
line is given in Donth (1986) using the statistics of  Remark 2.1 and simplify- 
ing all the open geometric problems globally by a Hopf  map from U(2) to 
$ 2 c  R 3. The result is a reduced coupling constant g '~0.09073,  and a 
vacuum symmetry breaking angle O~ # 0 with sin 20~ ~ 0.2315. 

Weinberg-Sa lam Model. Three different realizations of  the U(2) 
individuals can be envisaged with respect to the quasiclassical Lagrangian: 

1. Bundle section realizations ~ being group representations [spinors 
in M 4 and U(2)]. 

2. Bundle connection realizations A being generator representations 
(vectors). 

3. An infinite stack of ~ realizations for the vacuum elements. 

Gauge invariance means that the A individuals can rotate freely as a Whole 
with respect to the tp and ~ realizations. But, possibly, the mean relative 
rotation of  the ~b's to the ~ stack is fixed (breaking of the vacuum symmetry). 
Six angles would be needed to fix the corresponding, quasihidden tangential 
spaces. It seems to be an interesting question, whether there is a relation 

2Idea. Hide the 1-forms on U(2) by the use of Grassmannian numbers for spinor representations 
of the bundle s e c t i o n s :  ( A . x t ~ )  2 = x~x ~. 
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between this or a similar hypothesis and the following six properties of the 
quasiclassical Lagrangian for the Weinberg-Salam model: (i) labeling of 
one isospin component, A 3 say, for combining with the hypercharge field 
by a suitable chiral formulation of the O's, (ii) the Weinberg angle (~O~?) 
realizing the correspondence to the photon, (iii) the 45 ~ rotation for obtain- 
ing W • from A 1 and A 2, and (iv-vi) the absorption of three Goldstone 
Higgs fields. As the fixed rotation has an orientation (R or L), we can 
possibly find here the reason for the chirality. 

If there is no possibility for identifying single vacuum elements of the 
stack as individuals in M4, then there is no sense in a search for ~ quanta 

(Higgs particles). 
Let us assume that there are individuals "confined" in complex boun- 

daries [cf. the tables in Donth (1986)] or being additionally virtual in the 
vacuum. If they can do without their "own" weakly attached exponentials 
(56), then, possibly, they can do with collective "common" exponentials 
now having three more or less equivalent compact coordinates r, ~1, ~2 
("colors") for living with a limited identity defined only by their polynomials 
Ymk (instead of Amk). 

The existence of massless photons in M4 is a requirement of the 
correspondence principle between our highly nonlocal U(2) wave field 
configurations and free Hertz waves in M4. 

In conclusion, we have some hope of finding a reasonable quantum 
theory starting from highly nonlocal charge models because we have seen 
such rich and complex construction possibilities, even in our simple model, 
without leaving concepts in the actual order of magnitude (for instance no 
additional length is introduced or referred to). 
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